Artificial Intelligence Using Swift

Artificial Intelligence Using Swift

Mark Watson
Buy on Leanpub

Table of Contents

Artificial Intelligence Using Swift

  • Cover Material, Copyright, and License
  • Preface
    • Notes on the new June 2025 Book Edition
    • Requests from the Author
    • Notes on the Second Edition
    • Book Structure
    • Requests from the Author
    • Parts of this Book are Specific for macOS and iOS, with Some Support for Linux
    • Code for this Book
    • Author’s Background
    • Cover Art
    • CoreML Libraries Used in this Book
    • Swift 3rd Party Libraries
    • Acknowledgements
  • Part 1: Introduction and Short Examples
  • Setting Up Swift for Command Line Development
    • Installing Swift Packages
    • Creating Swift Packages
    • Accessing Libraries that You Write in Other Projects
  • Background Information for Writing Swift Command Line Utilities
    • Using Shell Processes
    • FileIO Examples
    • Swift REPL
  • Web Scraping
    • Running in the Swift REPL
  • Part 2: Large Language Models
  • Using the OpenAI LLM APIs
    • Core Architecture
    • Key Features
    • Technical Implementation Details
    • Running Tests
  • Using APIs for Anthropic Claude LLMs
    • Running the examples
  • Using Groq APIs to Open Weight LLM Models
    • Implementation of a Client Library for the Groq APIs
    • Running the Tests
  • Using the xAI Grok LLM
    • Implementation of a Grok API Client Library
  • Using Ollama to Run Local LLMs
    • Running the Ollama Service
    • Ollama Wrap Up
  • Using Apple’s MLX Framework to Run Local LLMs
    • MLX Framework History
    • MLX Resources on GitHub
    • Example Application for MLX Swift Examples Repository
    • Analysis of Swift and SwiftUI Code in the LLMEval Application
  • Part 3: Apple’s CoreML and NLP Libraries
  • Deep Learning Introduction
    • Simple Multi-layer Perceptron Neural Networks
    • Deep Learning
  • Natural Language Processing Using Apple’s Natural Language Framework
    • Using Apple’s NaturalLanguage Swift Library
    • A simple Wrapper Library for Apple’s NLP Models
  • Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database
    • Extending the String Class
    • Implementing a Local Vector Database for Document Embeddings
    • Create Local Embeddings Vectors From Local Text Files With OpenAI GPT APIs
    • Using Local Embeddings Vector Database With OpenAI GPT APIs
    • Wrap Up for Using Local Embeddings Vector Database to Enhance the Use of GPT3 APIs With Local Documents
  • Part 4: Knowledge Representation and Data Acquisition
  • Linked Data and the Semantic Web
    • Understanding the Resource Description Framework (RDF)
    • Frequently Used Resource Namespaces
    • Understanding the SPARQL Query Language
    • Semantic Web and Linked Data Wrap Up
  • Example Application: iOS and macOS Versions of my KnowledgeBookNavigator
    • Screen Shots of macOS Application
    • Application Code Listings
  • Part 5: Apple Intelligence
    • Developers Can Now Weave Apple Intelligence Directly Into Their Apps
    • Key Advantages for Developers:
  • Using Apple Intelligence’s Default System Model To Build a Chat Command Line Tool
  • Using Apple Intelligence’s Default System Model To Build a Coding Assistant Command Line Tool
  • Book Wrap Up
Artificial Intelligence Using Swift/overview

Artificial Intelligence Using Swift

course_overview

CoreML, NLP, Deep Learning, NLP, natural language processing, question answering, Semantic Web and Linked Data, Knowledge Graphs, Knowledge Representation

count_chapters
begin_reading
download
p_implied_book_part_name

Artificial Intelligence Using Swift24 chapters

Begin ›
  1. Cover Material, Copyright, and License

  2. Preface

  3. Part 1: Introduction and Short Examples

  4. Setting Up Swift for Command Line Development

  5. Background Information for Writing Swift Command Line Utilities

  6. Web Scraping

  7. Part 2: Large Language Models

  8. Using the OpenAI LLM APIs

  9. Using APIs for Anthropic Claude LLMs

  10. Using Groq APIs to Open Weight LLM Models

  11. Using the xAI Grok LLM

  12. Using Ollama to Run Local LLMs

  13. Using Apple’s MLX Framework to Run Local LLMs

  14. Part 3: Apple’s CoreML and NLP Libraries

  15. Deep Learning Introduction

  16. Natural Language Processing Using Apple’s Natural Language Framework

  17. Documents Question Answering Using OpenAI GPT4 APIs and a Local Embeddings Vector Database

  18. Part 4: Knowledge Representation and Data Acquisition

  19. Linked Data and the Semantic Web

  20. Example Application: iOS and macOS Versions of my KnowledgeBookNavigator

  21. Part 5: Apple Intelligence

  22. Using Apple Intelligence’s Default System Model To Build a Chat Command Line Tool

  23. Using Apple Intelligence’s Default System Model To Build a Coding Assistant Command Line Tool

  24. Book Wrap Up