Botnet Attack Detection in the Internet of Things Using Selected Learning Algorithms
Botnet Attack Detection in the Internet of Things Using Selected Learning Algorithms
A Research Study on Securing IoT Against Cyber Threats Using Machine Learning
About the Book
🔍 A Must-Read for IoT Security Researchers and Machine Learning Experts
As IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.
Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.
Key Features for Academic Researchers:
✔️ Comprehensive IoT Security Analysis – Explore the unique challenges of botnet detection across diverse IoT devices.
✔️ Advanced Machine Learning Techniques – Compare different learning algorithms and their effectiveness in botnet detection.
✔️ High-Quality Dataset & Empirical Evaluation – Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.
✔️ Research-Backed Findings – The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.
✔️ Future Research Directions – Identify gaps and opportunities for further exploration in IoT security and anomaly detection.
This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.
📖 Enhance your research and contribute to securing IoT networks—get your copy today!
The Leanpub 60 Day 100% Happiness Guarantee
Within 60 days of purchase you can get a 100% refund on any Leanpub purchase, in two clicks.
Now, this is technically risky for us, since you'll have the book or course files either way. But we're so confident in our products and services, and in our authors and readers, that we're happy to offer a full money back guarantee for everything we sell.
You can only find out how good something is by trying it, and because of our 100% money back guarantee there's literally no risk to do so!
So, there's no reason not to click the Add to Cart button, is there?
See full terms...
Earn $8 on a $10 Purchase, and $16 on a $20 Purchase
We pay 80% royalties on purchases of $7.99 or more, and 80% royalties minus a 50 cent flat fee on purchases between $0.99 and $7.98. You earn $8 on a $10 sale, and $16 on a $20 sale. So, if we sell 5000 non-refunded copies of your book for $20, you'll earn $80,000.
(Yes, some authors have already earned much more than that on Leanpub.)
In fact, authors have earnedover $14 millionwriting, publishing and selling on Leanpub.
Learn more about writing on Leanpub
Free Updates. DRM Free.
If you buy a Leanpub book, you get free updates for as long as the author updates the book! Many authors use Leanpub to publish their books in-progress, while they are writing them. All readers get free updates, regardless of when they bought the book or how much they paid (including free).
Most Leanpub books are available in PDF (for computers) and EPUB (for phones, tablets and Kindle). The formats that a book includes are shown at the top right corner of this page.
Finally, Leanpub books don't have any DRM copy-protection nonsense, so you can easily read them on any supported device.
Learn more about Leanpub's ebook formats and where to read them