Modern Machine Learning Stack
$59.98
Bought separately
$56.99
Minimum price
$59.99
Suggested price

Modern Machine Learning Stack

About the Bundle

The key benefit of this bundle is to provide you with an integrated learning path covering Google JAX Cookbook alongside PyTorch 2. It unifies diverse frameworks used in cutting-edge machine learning research, equipping developers with hands-on techniques for numerical computation and deep neural network modeling. The set helps build proficiency in both experimental and production-level implementations of machine learning algorithms, thereby addressing varying computational needs.

  • Share this bundle
  • Categories

    • Artificial Intelligence
    • Machine Learning
    • Programming Cookbooks
    • Python
    • Cookbooks
    • Algorithm

About the Books

Google JAX Cookbook

Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy
  • 100%

    Complete

  • PDF

  • EPUB

  • English

This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.

Key Learnings

  • Get your calculations done faster by moving from NumPy to JAX's optimized framework.
  • Make your training pipelines more efficient by profiling how long things take and how much memory they use.
  • Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.
  • Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.
  • Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.
  • Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.
  • Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.
  • Use advanced visualization techniques, like confusion matrices and learning curves, to make model evaluation more effective.
  • Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.
  • Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.

Table of Content

  1. Transition NumPy to JAX
  2. Profiling Computation and Device Memory
  3. Debugging Runtime Values and Errors
  4. Mastering Pytrees for Data Structures
  5. Exporting and Serialization
  6. Type Promotion Semantics and Mixed Precision
  7. Integrating Foreign Functions (FFI)
  8. Training Neural Networks with JAX

Learning PyTorch 2.0, Second Edition

Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and deep learning models
  • 100%

    Complete

  • PDF

  • EPUB

  • English

"Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent features of PyTorch.

The book presents a practical program based on the fish dataset which provides step-by-step guidance through the processes of building, training and deploying neural networks, with each example prepared for immediate implementation. Given your familiarity with machine learning and neural networks, this book offers concise explanations of foundational topics, allowing you to proceed directly to the practical, advanced aspects of PyTorch programming. The key learnings include the design of various types of neural networks, the use of torch.compile() for performance optimization, the deployment of models using TorchServe, and the implementation of quantization for efficient inference.

Furthermore, you will also learn to migrate TensorFlow models to PyTorch using the ONNX format. The book employs essential libraries, including torchvision, torchserve, tf2onnx, onnxruntime, and requests, to facilitate seamless integration of PyTorch with production environments. Regardless of whether the objective is to fine-tune models or to deploy them on a large scale, this second edition is designed to ensure maximum efficiency and speed, with practical PyTorch scripting at the forefront of each chapter.

Key Learnings

  • Master tensor manipulations and advanced operations using PyTorch's efficient tensor libraries.
  • Build feedforward, convolutional, and recurrent neural networks from scratch.
  • Implement transformer models for modern natural language processing tasks.
  • Use CUDA 12 and mixed precision training (AMP) to accelerate model training and inference.
  • Deploy PyTorch models in production using TorchServe, including multi-model serving and versioning.
  • Migrate TensorFlow models to PyTorch using ONNX format for seamless cross-framework compatibility.
  • Optimize neural network architectures using torch.compile() for improved speed and efficiency.
  • Utilize PyTorch's Quantization API to reduce model size and speed up inference.
  • Setup custom layers and architectures for neural networks to tackle domain-specific problems. 
  • Monitor and log model performance in real-time using TorchServe's built-in tools and configurations.

Table of Content

  1. Introduction To PyTorch 2.3 and CUDA 12
  2. Getting Started with Tensors
  3. Building Neural Networks with PyTorch
  4. Training Neural Networks
  5. Advanced Neural Network Architectures
  6. Quantization and Model Optimization
  7. Migrating TensorFlow to PyTorch
  8. Deploying PyTorch Models with TorchServe

The Leanpub 60 Day 100% Happiness Guarantee

Within 60 days of purchase you can get a 100% refund on any Leanpub purchase, in two clicks.

Now, this is technically risky for us, since you'll have the book or course files either way. But we're so confident in our products and services, and in our authors and readers, that we're happy to offer a full money back guarantee for everything we sell.

You can only find out how good something is by trying it, and because of our 100% money back guarantee there's literally no risk to do so!

So, there's no reason not to click the Add to Cart button, is there?

See full terms...

Earn $8 on a $10 Purchase, and $16 on a $20 Purchase

We pay 80% royalties on purchases of $7.99 or more, and 80% royalties minus a 50 cent flat fee on purchases between $0.99 and $7.98. You earn $8 on a $10 sale, and $16 on a $20 sale. So, if we sell 5000 non-refunded copies of your book for $20, you'll earn $80,000.

(Yes, some authors have already earned much more than that on Leanpub.)

In fact, authors have earnedover $14 millionwriting, publishing and selling on Leanpub.

Learn more about writing on Leanpub

Free Updates. DRM Free.

If you buy a Leanpub book, you get free updates for as long as the author updates the book! Many authors use Leanpub to publish their books in-progress, while they are writing them. All readers get free updates, regardless of when they bought the book or how much they paid (including free).

Most Leanpub books are available in PDF (for computers) and EPUB (for phones, tablets and Kindle). The formats that a book includes are shown at the top right corner of this page.

Finally, Leanpub books don't have any DRM copy-protection nonsense, so you can easily read them on any supported device.

Learn more about Leanpub's ebook formats and where to read them

Write and Publish on Leanpub

You can use Leanpub to easily write, publish and sell in-progress and completed ebooks and online courses!

Leanpub is a powerful platform for serious authors, combining a simple, elegant writing and publishing workflow with a store focused on selling in-progress ebooks.

Leanpub is a magical typewriter for authors: just write in plain text, and to publish your ebook, just click a button. (Or, if you are producing your ebook your own way, you can even upload your own PDF and/or EPUB files and then publish with one click!) It really is that easy.

Learn more about writing on Leanpub