Email the Author

You can use this page to email Amancio Bouza about Hypothesis-Based Collaborative Filtering.

Please include an email address so the author can respond to your query

This message will be sent to Amancio Bouza

This site is protected by reCAPTCHA and the Google  Privacy Policy and  Terms of Service apply.

About the Book

The vast product variety and product variation offered by online retailers provide an amazing amount of choice options to individuals, thus posing a big challenge to them finding and choosing interesting products which provide them the most utility. Consequently, consumers have to be satisfied with finding a product that provides them sufficient utility. Beyond that, individuals tend to even defer product choice, which is known as overchoice phenomenon.

Recommender systems have emerged in the past years as an effective method to help individuals with finding interesting products. As a result, the consumer welfare enhanced by $731 million to $1.03 billion in the year 2000 due to the increased product variety of online bookstores. Consumer welfare refers to consumers’ total satisfaction. This enhancement in consumer welfare is 7 to 10 times larger than the consumer welfare gain from increased competition and lower prices in the book market. In other words, recommender systems are essential for increasing consumers welfare, which ultimately leads to an increase of economic and social welfare.

Typically, recommender systems use the collective wisdom of individuals for exposing individuals to products which best fits their preferences, thus maximizing their utility. More precisely, the product ratings of like-minded individuals are considered by the recommender system to provide individuals recommendations. Commonly, like-minded individuals are retrieved by comparing their ratings for common rated products. This filtering technology is commonly referred to as collaborative filtering.

However, retrieving like-minded individuals based on their ratings for common rated products may be inappropriate because common rated products may not necessarily be a representative sample of two individuals’ preferences being compared. We show why and when this is the case.

In this dissertation, we present hypothesis-based collaborative filtering (HCF) to expose individuals to products which best fits their preferences. HCF retrieves like-minded individuals based on the similarity of their hypothesized preferences by means of machine learning algorithms hypothesizing individuals’ preferences. Machine learning is a method to extract patterns to generalize from observations, thus being adequate to hypothesize individuals’ preferences from their product ratings. We present two different frameworks which retrieve like-minded individuals comparing the composition of hypothesized preferences and the predicted utilities individuals receive from products. Furthermore, we provide empirical evidence about the superiority of HCF to baseline collaborative filtering methods.


About the Author

Amancio Bouza’s avatar Amancio Bouza

@AmancioBouza

Amancio has received his PhD for his thesis on recommender systems, machine learning, and Semantic Web. He has several years of experience in tech startups, IT companies, and companies across different industries as Enterpreneur, Product Manager, Product Owner, Technical Lead, and Software Engineer

Logo white 96 67 2x

Publish Early, Publish Often

  • Path
  • There are many paths, but the one you're on right now on Leanpub is:
  • Recommendersystems › Email Author › New
    • READERS
    • Newsletters
    • Weekly Sale
    • Monthly Sale
    • Store
    • Home
    • Redeem a Token
    • Search
    • Support
    • Leanpub FAQ
    • Leanpub Author FAQ
    • Search our Help Center
    • How to Contact Us
    • FRONTMATTER PODCAST
    • Featured Episode
    • Episode List
    • MEMBERSHIPS
    • Reader Memberships
    • Department Reader Memberships
    • Author Memberships
    • Your Membership
    • COMPANY
    • About
    • About Leanpub
    • Blog
    • Contact
    • Press
    • Essays
    • AI Services
    • Imagine a world...
    • Manifesto
    • More
    • Partner Program
    • Causes
    • Accessibility
    • AUTHORS
    • Write and Publish on Leanpub
    • Create a Book
    • Create a Bundle
    • Create a Course
    • Create a Track
    • Testimonials
    • Why Leanpub
    • Services
    • TranslateAI
    • TranslateWord
    • TranslateEPUB
    • PublishWord
    • Publish on Amazon
    • CourseAI
    • GlobalAuthor
    • Marketing Packages
    • IndexAI
    • Author Newsletter
    • The Leanpub Author Update
    • Author Support
    • Author Help Center
    • Leanpub Authors Forum
    • The Leanpub Manual
    • Supported Languages
    • The LFM Manual
    • Markua Manual
    • API Docs
    • Organizations
    • Learn More
    • Sign Up
    • LEGAL
    • Terms of Service
    • Copyright Policy
    • Privacy Policy
    • Refund Policy

*   *   *

Leanpub is copyright © 2010-2025 Ruboss Technology Corp.
All rights reserved.

This site is protected by reCAPTCHA
and the Google  Privacy Policy and  Terms of Service apply.

Leanpub requires cookies in order to provide you the best experience. Dismiss