Deep Learning for Time Series Cookbook
Deep Learning for Time Series Cookbook
Use PyTorch and Python recipes for forecasting, classification, and anomaly detection
About the Book
Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise.
This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You’ll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you’ll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions.
By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.
Table of Contents
- Getting Started with Time Series
- Getting Started with PyTorch
- Univariate Time Series Forecasting
- Forecasting with PyTorch Lightning
- Global Forecasting Models
- Advanced Deep Learning Architectures for Time Series Forecasting
- Probabilistic Time Series Forecasting
- Deep Learning for Time Series Classification
- Deep Learning for Time Series Anomaly Detection
About the Publisher
This book is published on Leanpub by Packt Publishing Ltd
Packt Publishing are an established global technical learning content provider, founded in Birmingham, UK with over twenty years’ experience in delivering premium rich content from ground-breaking authors on a wide range of emerging and popular technologies. Our titles have global relevance our multimedia portfolio includes over 9,000 books, e-books, audiobooks and video courses. www.packtpub.com
The Leanpub 60 Day 100% Happiness Guarantee
Within 60 days of purchase you can get a 100% refund on any Leanpub purchase, in two clicks.
Now, this is technically risky for us, since you'll have the book or course files either way. But we're so confident in our products and services, and in our authors and readers, that we're happy to offer a full money back guarantee for everything we sell.
You can only find out how good something is by trying it, and because of our 100% money back guarantee there's literally no risk to do so!
So, there's no reason not to click the Add to Cart button, is there?
See full terms...
Earn $8 on a $10 Purchase, and $16 on a $20 Purchase
We pay 80% royalties on purchases of $7.99 or more, and 80% royalties minus a 50 cent flat fee on purchases between $0.99 and $7.98. You earn $8 on a $10 sale, and $16 on a $20 sale. So, if we sell 5000 non-refunded copies of your book for $20, you'll earn $80,000.
(Yes, some authors have already earned much more than that on Leanpub.)
In fact, authors have earnedover $14 millionwriting, publishing and selling on Leanpub.
Learn more about writing on Leanpub
Free Updates. DRM Free.
If you buy a Leanpub book, you get free updates for as long as the author updates the book! Many authors use Leanpub to publish their books in-progress, while they are writing them. All readers get free updates, regardless of when they bought the book or how much they paid (including free).
Most Leanpub books are available in PDF (for computers) and EPUB (for phones, tablets and Kindle). The formats that a book includes are shown at the top right corner of this page.
Finally, Leanpub books don't have any DRM copy-protection nonsense, so you can easily read them on any supported device.
Learn more about Leanpub's ebook formats and where to read them