Email the Author

You can use this page to email Roger D. Peng about Essays on Data Analysis.

Please include an email address so the author can respond to your query

This message will be sent to Roger D. Peng

This site is protected by reCAPTCHA and the Google  Privacy Policy and  Terms of Service apply.

About the Book

What is a data analysis? What makes for a successful data analysis? These are difficult questions that even long-time practitioners have difficulty answering. The way that we have thought about data analysis to date has been focused on the data and the statistical tools that we employ to produce results. But data analysis is about more than those things, and developing an understanding of the things "outside" the data is critical to characterizing the actual process of data analysis, the process that data analysts go through every day.

This book attempts to draw a more complete picture of the data analysis process and presents a new view about what makes for a successful data analysis. It is presented in a completely non-technical and highly readable style that should be of interest to practitioners and managers in data analysis.


About the Author

Roger D. Peng’s avatar Roger D. Peng

@rdpeng

Roger D. Peng is a Professor of Statistics and Data Sciences at the University of Texas, Austin. Previously, he was Professor of Biostatistics at the Johns Hopkins Bloomberg School of Public Health. His research focuses on the development of statistical methods for addressing environmental health problems and on developing tools for doing better data analysis. He is the author of the popular book R Programming for Data Science and 10 other books on data science and statistics. He is also the co-creator of the Johns Hopkins Data Science Specialization, the Simply Statistics blog where he writes about statistics for the public, the Not So Standard Deviations podcast with Hilary Parker, and The Effort Report podcast with Elizabeth Matsui. Roger is a Fellow of the American Statistical Association and is the recipient of the Mortimer Spiegelman Award from the American Public Health Association, which honors a statistician who has made outstanding contributions to public health. He can be found on Twitter and GitHub at @rdpeng.

Logo white 96 67 2x

Publish Early, Publish Often

  • Path
  • There are many paths, but the one you're on right now on Leanpub is:
  • Dataanalysisessays › Email Author › New
    • READERS
    • Newsletters
    • Weekly Sale
    • Monthly Sale
    • Store
    • Home
    • Redeem a Token
    • Search
    • Support
    • Leanpub FAQ
    • Leanpub Author FAQ
    • Search our Help Center
    • How to Contact Us
    • FRONTMATTER PODCAST
    • Featured Episode
    • Episode List
    • MEMBERSHIPS
    • Reader Memberships
    • Department Reader Memberships
    • Author Memberships
    • Your Membership
    • COMPANY
    • About
    • About Leanpub
    • Blog
    • Contact
    • Press
    • Essays
    • AI Services
    • Imagine a world...
    • Manifesto
    • More
    • Partner Program
    • Causes
    • Accessibility
    • AUTHORS
    • Write and Publish on Leanpub
    • Create a Book
    • Create a Bundle
    • Create a Course
    • Create a Track
    • Testimonials
    • Why Leanpub
    • Services
    • TranslateAI
    • TranslateWord
    • TranslateEPUB
    • PublishWord
    • Publish on Amazon
    • CourseAI
    • GlobalAuthor
    • Marketing Packages
    • IndexAI
    • Author Newsletter
    • The Leanpub Author Update
    • Author Support
    • Author Help Center
    • Leanpub Authors Forum
    • The Leanpub Manual
    • Supported Languages
    • The LFM Manual
    • Markua Manual
    • API Docs
    • Organizations
    • Learn More
    • Sign Up
    • LEGAL
    • Terms of Service
    • Copyright Policy
    • Privacy Policy
    • Refund Policy

*   *   *

Leanpub is copyright © 2010-2025 Ruboss Technology Corp.
All rights reserved.

This site is protected by reCAPTCHA
and the Google  Privacy Policy and  Terms of Service apply.

Leanpub requires cookies in order to provide you the best experience. Dismiss