Clean Machine Learning Code
Clean Machine Learning Code
About the Book
It is super clear that people involved with ML/DS type of work, are really really smart.
Individuals in this field know about statistics, machine learning, academic research, data manipulation, and they excel at reasoning, and logical thinking beyond belief.
However, as these talented individuals transition to working with software engineers and product managers, on live products, they notice a deep sense of instability.
The reality is that software is an intensely creative activity but produces tremendously fragile artifacts.
Now, if traditional software products are fragile and can be taken down by flipping a single IF condition at the right place, one can only imagine the fragility of ML software.
How can something so valuable for company profits, and society as a whole be so fragile? And how can this fragility be so unexplored by ML practitioners?
Not into reading? Checkout the companion 5 hours video course + book bundle:
https://www.udemy.com/course/clean-machine-learning-code
If you read this far, you are well aware that there is no useful Machine Learning (ML) without extensive software. But building complex software comes with many challenges.
ML software is explicitly full of needless complexity and repetition. Thick opacity, rigidity, and viscosity of design magnify this brew of complexity. With these issues, ML failures are growing in importance at an unprecedented pace.
It does not have to be this way.
As a global data science community, the autonomous systems we build can be costly, dangerous, and even deadly. Adding to the problem is the inexperienced workforce of this 5 to 10 years old craft. As of 2019-2020, 40% of data scientists in the USA have less than 5 years of experience.
The software industry is experiencing a boom in ML development and usage. This is not unlike previous software engineering booms in the early 2000s. The current boom manifests itself with a menagerie of constructs, abstractions, frameworks, and workflows. This multitude of integration challenges remind us of old and classical software problems. Some of the issues present in the ML software engineering practice are new. But the majority of the software engineering concerns have a historical smell. Going back to the early days of software engineering can help with today’s ML problems.
For us, ML engineers, it is time to stop reinventing the wheel, making the same old mistakes, and start using the decades of successful software engineering practices by replacing “Software” with “Machine Learning Software”.
This book can help with that.
Reader Testimonials
Adam Petranovich
Chief Data Scientist Prognos Health
Whether you are new to the Data Science/ Software engineering field or a seasoned expert, Clean Machine Learning Code has a place on your shelf. Dr. Taifi goes beyond the 'what' to do, and explores why you should do things. I found his book clear, concise and an immediate order for my team.
Tian Yu
Applied Scientist at Amazon
Clean Machine Learning Code is a great coding style guidance that walks you through end-to-end good coding habits from variable naming to architecture and test, along with a ton of easy to understand examples. This book should be recommended to every Machine Learning and Data Science practitioner!
Ben Robinson
Data Scientist at Aetna
Too often in data science, considerations around architecture and pipeline optimization are treated as secondary to the machine learning problem. This book shows why that's a mistake and offers data scientists a clear guide on how to avoid it.
Ryan Woodard
Staff Data Scientist at Thorn
In the same way that Lebowski's rug tied his room together, the organized knowledge and best practices in this book tie together the random bits of informal learning, online courses, self-study and pseudo-software engineering that populate the brains of most data scientists, who arrived at their posts through unplanned random walks unladen by nonexistent industry pedagogy. This book is great and is helping me re-evaluate parts of my workflow and style, making them more efficient.
Daniel Austin
Senior Data Scientist at Nike
A comprehensive (and often humorous) tour of how to build ML systems that can be deployed and maintained in production and at scale. These lessons are often learned at high cost on the job if at all. I cannot recommend this book enough!
Win Suen
Machine Learning Engineer
I enjoyed reading Moussa Taifi's work, Clean Machine Learning Code. The book is centered around solid software development best practices, but never loses sight of the ML practitioner, who often negotiates a delicate balance between technical and business needs. It is also written with a sense of humor and a very conversational tone. You feel like you are sitting down to coffee with a good friend who will tell it to you straight about how your ML practice can be improved.
Table of Contents
-
Chapter 1 - Clean Machine Learning Code Fundamentals
- The Flowchart: Why You Need This Book
- The Future of Machine Learning Code
- Bad Machine Learning Code
- The TCO of a Predictive Service Mess
- Rebuild the ML Pipelines from Scratch
- Ideal vs. Real Machine Learning Workflows
- Taking Responsibility for ML Code Rot
- Overfitting to Deadlines
- The Art of Feature Engineering Your Code
- What Is Clean Machine Learning Code?
- Inference vs Training of Source Code
- Active Reinforcement Learning for Source Code
- Transfer Learning and the Origins of CMLC
- Conclusion
- References
-
Chapter 2 - Optimizing Names
- Introduction
- The Objective Function of Names
- Avoid Mislabeled Labels
- Avoid Noisy Labels
- Make Siri Say it
- Make it Greppable
- Avoid Name Embeddings
- Avoid Semantic Name Maps
- Part-of-Speech Tagging
- CumSum vs. CummulativeSum
- Naming Consistency
- Avoid Paronomasia
- Use Technical Names
- Use Domain Names
- Use Clustering for Context
- The Scope Length Guidelines
- Conclusion
- References
-
Chapter 3 - Optimizing Functions
- Small is Beautiful
- 3, 4, maybe 5 lines max!
- Hierarchical functions
- Single Objective Function
- Bagging and Function Ensembles
- Single Abstraction Level
- Function Arguments
- Have No Collateral Damage
- Side-effects in Feature Engineering Pipelines
- Functional Programming 101
- Make Temporal Couplings Explicit
- Grokking Commands vs. Queries
- Handling Exceptions
- Single Entry, Single Exit
- A Method to the Madness
- Conclusion
- References
-
Chapter 4 - Style
- Comments
- Don’t Hide Bad Code Behind Comments
- Let Code Explain Itself
- Useful comments
- Useless Comments
- Formatting Goals
- Python File Size and Notebook Size
- PEP-8 When You Can
- Minimize Conceptual Distances
- One last thing about one-liners
- Conclusion
- References
-
Chapter 5 - Clean Machine Learning Classes
- I Know Classes in Python Why Are You Wasting My Time?
- Goals for ML Class Design
- S.O.L.I.D Design Principles for ML Classes
- Small Cohesive Classes: The Single Responsibility Principle
- Organizing for Change: The Open-Closed Principle
- Maintaining Contracts: The Liskov Substitution Principle
- Isolating from Change I: The Interface Substitution Principle
- Isolating from Change II: The Dependency Inversion Principle
- Conclusion
- References
-
Chapter 6 - ML Software Architecture
- The purpose of ML Software Architecture
- Third-party packages are NOT an Architecture
- Architecture is about Usage
- Avoiding Chaos using Architecture
- Frameworks and Harems
- Defining ML Use-cases
- Separating High Level Policy from Low Level Implementation
- The Clean Architecture in One Picture
- Related Architecture Names and Concepts
- Friction and Boundary Conditions
- Taming the Recsys Beast
- Clean ML Architecture
- Re-architecting the ML Pipeline
- Living with a Main
- Conclusion
- References
-
Chapter 7 - Test Driven Machine Learning
- Making Your Life Harder in the Short Term
- 60 Minutes to Save Lives
- Does ML Code Rot?
- Tests Let You Clean Your Code
- Self-testing ML Code
- What is this TDD you are talking about?
- Which ML Code Tests Do You Need?
- GridSearch for ML Code Tests
- Unit Tests
- Integration Tests
- Component Tests
- End-to-End Tests
- Threshold Tests
- Regression Tests
- Test Implementation techniques
- Test Doubles
- Cost Effective Tests
- Property-based testing
- Exterminate Non-Determinism in ML Tests
- The Basics
- Social Distancing
- Isolation And Co-mingling
- The Brave New Async World
- Working around Remote Services
- Clocks
- It Only Fails During Business Hours
- Test Coverage
- What To Do If You Are Giving Up on Testing
- Testing Expeditions a.k.a. Exploratory Testing
- Synthetic Monitoring
- Feature Toggles
- Approaches From Around The ML Community
- Software 2.0
- The ML Test Score
- ML Score Checklist Visualized
- Coding Habits for Data Scientists
- Continuous Delivery
- Conclusions
- References
Causes Supported

Tree-Nation
You reforest the world
https://tree-nation.comTree-Nation is the largest reforestation platform enabling citizens and companies to plant trees around the world.
The Leanpub 60-day 100% Happiness Guarantee
Within 60 days of purchase you can get a 100% refund on any Leanpub purchase, in two clicks.
See full terms
Do Well. Do Good.
Authors have earned$11,595,069writing, publishing and selling on Leanpub, earning 80% royalties while saving up to 25 million pounds of CO2 and up to 46,000 trees.
Learn more about writing on Leanpub
Free Updates. DRM Free.
If you buy a Leanpub book, you get free updates for as long as the author updates the book! Many authors use Leanpub to publish their books in-progress, while they are writing them. All readers get free updates, regardless of when they bought the book or how much they paid (including free).
Most Leanpub books are available in PDF (for computers), EPUB (for phones and tablets) and MOBI (for Kindle). The formats that a book includes are shown at the top right corner of this page.
Finally, Leanpub books don't have any DRM copy-protection nonsense, so you can easily read them on any supported device.
Learn more about Leanpub's ebook formats and where to read them
Top Books
C++20 - The Complete Guide
Nicolai M. JosuttisAll the new language and library features of C++20 (for those who know previous versions).
The book presents all new language and library features of C++20. Learn how this impacts day-to-day programming, to benefit in practice, to combine new features, and to avoid all new traps.
Buy early, pay less, free updates.
Other books:
Jetpack Compose internals
Jorge CastilloJetpack Compose is the future of Android UI. Master how it works internally and become a more efficient developer with it. You'll also find it valuable if you are not an Android dev. This book provides all the details to understand how the Compose compiler & runtime work, and how to create a client library using them.
SignalR on .NET 6 - the Complete Guide
Fiodar SazanavetsLearn everything there is to learn about SignalR and how to integrate it with the latest .NET 6 and C# 10 features. Learn how to connect any type of client to SignalR, including plain WebSocket client. Learn how to build interactive applications that can communicate with each other in real time without making excessive calls.
OpenIntro Statistics
David Diez, Christopher Barr, Mine Cetinkaya-Rundel, and OpenIntroA complete foundation for Statistics, also serving as a foundation for Data Science.
Leanpub revenue supports OpenIntro (US-based nonprofit) so we can provide free desk copies to teachers interested in using OpenIntro Statistics in the classroom and expand the project to support free textbooks in other subjects.
More resources: openintro.org.
R Programming for Data Science
Roger D. PengThis book brings the fundamentals of R programming to you, using the same material developed as part of the industry-leading Johns Hopkins Data Science Specialization. The skills taught in this book will lay the foundation for you to begin your journey learning data science. Printed copies of this book are available through Lulu.
The easiest way to learn design patterns
Fiodar SazanavetsLearn design patterns in the easiest way possible. You will no longer have to brute-force your way through each one of them while trying to figure out how it works. The book provides a unique methodology that will make your understanding of design patterns stick. It can also be used as a reference book where you can find design patterns in seconds.
Ansible for DevOps
Jeff GeerlingAnsible is a simple, but powerful, server and configuration management tool. Learn to use Ansible effectively, whether you manage one server—or thousands.
CCIE Service Provider Version 4 Written and Lab Exam Comprehensive Guide
Nicholas RussoThe service provider landscape has changed rapidly over the past several years. Networking vendors are continuing to propose new standards, techniques, and procedures for overcoming new challenges while concurrently reducing costs and delivering new services. Cisco has recently updated the CCIE Service Provider track to reflect these changes; this book represents the author's personal journey in achieving that certification.
Cronache di Domain-Driven Design
Francesco Strazzullo, Matteo Baglini, Gianluca Padovani, Emanuele DelBono, Marco Consolaro, Alessandro Colla, Uberto Barbini, Alberto Acerbis, Julie Camosseto, DDD Open, and Alberto BrandoliniCronache di Domain-Driven Design: un libro corale in italiano fatto di storie indipendenti tra loro, che sono il risultato dell’applicazione di Domain-Driven Design su progetti reali.
Functional event-driven architecture: Powered by Scala 3
Gabriel VolpeExplore the event-driven architecture (EDA) in a purely functional way, mainly powered by Fs2 streams in Scala 3!
Leverage your functional programming skills by designing and writing stateless microservices that scale, powered by stateful message brokers.
Top Bundles
- #1
Practical FP in Scala + Functional event-driven architecture
2 Books
Practical FP in Scala (A hands-on approach) & Functional event-driven architecture, aka FEDA, (Powered by Scala 3), together as a bundle! The content of PFP in Scala is a requirement to understand FEDA so why not take advantage of this bundle!? - #2
Software Architecture for Developers: Volumes 1 & 2 - Technical leadership and communication
2 Books
"Software Architecture for Developers" is a practical and pragmatic guide to modern, lightweight software architecture, specifically aimed at developers. You'll learn:The essence of software architecture.Why the software architecture role should include coding, coaching and collaboration.The things that you really need to think about before... - #3
All the Books of The Medical Futurist
6 Books
We put together the most popular books from The Medical Futurist to provide a clear picture about the major trends shaping the future of medicine and healthcare. Digital health technologies, artificial intelligence, the future of 20 medical specialties, big pharma, data privacy, digital health investments and how technology giants such as Amazon... - #4
CCIE Service Provider Ultimate Study Bundle
2 Books
Piotr Jablonski, Lukasz Bromirski, and Nick Russo have joined forces to deliver the only CCIE Service Provider training resource you'll ever need. This bundle contains a detailed and challenging collection of workbook labs, plus an extensively detailed technical reference guide. All of us have earned the CCIE Service Provider certification... - #6
Modern C++ Collection
3 Books
Get All about Modern C++C++ Standard Library, including C++20Concurrency with Modern C++, including C++20C++20Each book has about 200 complete code examples. Updates are included. When I update one of the books, you immediately get the updated bundle. You can expect significant updates to each new C++ standard (C++23, C++26, .. ) and also... - #7
Pattern-Oriented Memory Forensics and Malware Detection
2 Books
This training bundle for security engineers and researchers, malware and memory forensics analysts includes two accelerated training courses for Windows memory dump analysis using WinDbg. It is also useful for technical support and escalation engineers who analyze memory dumps from complex software environments and need to check for possible...