Ultimate ML interpretability bundle: Interpretable Machine Learning + Interpreting Machine Learning Models With SHAP
Ultimate ML interpretability bundle: Interpretable Machine Learning + Interpreting Machine Learning Models With SHAP
About the Bundle
About the Books
Interpreting Machine Learning Models With SHAP
A Guide With Python Examples And Theory On Shapley Values
Machine learning is transforming fields from healthcare diagnostics to climate change predictions through their predictive performance. However, these complex machine learning models often lack interpretability, which is becoming more essential than ever for debugging, fostering trust, and communicating model insights.
Introducing SHAP, the Swiss army knife of machine learning interpretability:
- SHAP can be used to explain individual predictions.
- By combining explanations for individual predictions, SHAP allows to study the overall model behavior.
- SHAP is model-agnostic – it works with any model, from simple linear regression to deep learning.
- With its flexibility, SHAP can handle various data formats, whether it’s tabular, image, or text.
- The Python package
shap
makes the application of SHAP for model interpretation easy.
This book will be your comprehensive guide to mastering the theory and application of SHAP. It starts with the quite fascinating origins in game theory and explores what splitting taxi costs has to do with explaining machine learning predictions. Starting with using SHAP to explain a simple linear regression model, the book progressively introduces SHAP for more complex models. You’ll learn the ins and outs of the most popular explainable AI method and how to apply it using the shap
package.
In a world where interpretability is key, this book is your roadmap to mastering SHAP. For machine learning models that are not only accurate but also interpretable.
Who This Book Is For
This book is for data scientists, statisticians, machine learners, and anyone who wants to learn how to make machine learning models more interpretable. Ideally, you are already familiar with machine learning to get the most out of this book. And you should know your way around Python to follow the code examples.
What's in the Book
Note: Please be aware that the ePub version utilizes MathML for mathematical notations and may not be compatible with all eReaders. Leanpub has a 60-day "100% Happiness Guarantee", so don't hesitate to just try it out. And you'll also get the PDF where the equations look good.
- Introduction
- A Short History of Shapley Values and SHAP
- Theory of Shapley Values
- From Shapley Values to SHAP
- Estimating SHAP Values
- SHAP for Linear Models
- Classification with Logistic Regression
- SHAP for Additive Models
- Understanding Feature Interactions with SHAP
- The Correlation Problem
- Regressing Using a Random Forest
- Image Classification with Partition Explainer
- Image Classification with Deep and Gradient Explainer
- Explaining Language Models
- Limitations of SHAP
- Building SHAP Dashboards with Shapash
- Alternatives to the shap Library
- Extensions of SHAP
- Other Applications of Shapley Values in Machine Learning
- SHAP Estimators
- The Role of Maskers and Background Data
About me (Christoph Molnar)
Author of the free online book Interpretable Machine Learning. I have a background in both statistics and machine learning and did my Ph.D. in interpretable machine learning. After a mix of data scientist jobs and academia, I'm now a full-time machine learning book author.
4 reader testimonials
Interpretable Machine Learning (Second Edition)
A Guide for Making Black Box Models Explainable
Interpretable Machine Learning is a comprehensive guide to making machine learning models interpretable
"Pretty convinced this is the best book out there on the subject"
– Brian Lewis, Data Scientist at Cornerstone Research
Summary
This book covers a range of interpretability methods, from inherently interpretable models to methods that can make any model interpretable, such as SHAP, LIME, and permutation feature importance. It also includes interpretation methods specific to deep neural networks and discusses why interpretability is important in machine learning. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted?
"What I love about this book is that it starts with the big picture instead of diving immediately into the nitty gritty of the methods (although all of that is there, too)."
– Andrea Farnham, Researcher at Swiss Tropical and Public Health Institute
Who the book is for
This book is essential for machine learning practitioners, data scientists, statisticians, and anyone interested in making their machine learning models interpretable. It will help readers select and apply the appropriate interpretation method for their specific project.
"This one has been a life saver for me to interpret models. ALE plots are just too good!"
– Sai Teja Pasul, Data Scientist at Kohl's
You'll learn about
- The concepts of machine leaning interpretability
- Inherently interpretable models
- Methods to make any machine model interpretable, such as SHAP, LIME and permutation feature importance
- Interpretation methods specific to deep neural networks
- Why interpretability is important and what's behind this concept
About the author
The author, Christoph Molnar, is an expert in machine learning and statistics, with a Ph.D. in interpretable machine learning.
Other Versions
The print version can be bought on Amazon.
A free HTML version of the book can be found at: https://christophm.github.io/interpretable-ml-book/
The Leanpub 60 Day 100% Happiness Guarantee
Within 60 days of purchase you can get a 100% refund on any Leanpub purchase, in two clicks.
Now, this is technically risky for us, since you'll have the book or course files either way. But we're so confident in our products and services, and in our authors and readers, that we're happy to offer a full money back guarantee for everything we sell.
You can only find out how good something is by trying it, and because of our 100% money back guarantee there's literally no risk to do so!
So, there's no reason not to click the Add to Cart button, is there?
See full terms...
Earn $8 on a $10 Purchase, and $16 on a $20 Purchase
We pay 80% royalties on purchases of $7.99 or more, and 80% royalties minus a 50 cent flat fee on purchases between $0.99 and $7.98. You earn $8 on a $10 sale, and $16 on a $20 sale. So, if we sell 5000 non-refunded copies of your book for $20, you'll earn $80,000.
(Yes, some authors have already earned much more than that on Leanpub.)
In fact, authors have earnedover $13 millionwriting, publishing and selling on Leanpub.
Learn more about writing on Leanpub
Free Updates. DRM Free.
If you buy a Leanpub book, you get free updates for as long as the author updates the book! Many authors use Leanpub to publish their books in-progress, while they are writing them. All readers get free updates, regardless of when they bought the book or how much they paid (including free).
Most Leanpub books are available in PDF (for computers) and EPUB (for phones, tablets and Kindle). The formats that a book includes are shown at the top right corner of this page.
Finally, Leanpub books don't have any DRM copy-protection nonsense, so you can easily read them on any supported device.
Learn more about Leanpub's ebook formats and where to read them