Email the Author

You can use this page to email Andrija Djurovic about Applied Data Science for Credit Risk.

Please include an email address so the author can respond to your query

This message will be sent to Andrija Djurovic

This site is protected by reCAPTCHA and the Google  Privacy Policy and  Terms of Service apply.

About the Book

Over the past five decades, technological advancements have driven significant transformations in data science. While the rise of high-speed computing has played a key role, the development of specialized data science tools and packages has been even more crucial in shaping the field. Today, data practitioners increasingly rely on these tools to streamline analysis and automate processes. However, the widespread use of such tools can sometimes lead to over-automation, where important foundational principles and assumptions are overlooked. This can result in the application of incorrect statistical methods, potentially compromising the validity of the analysis.

This book addresses these challenges by showcasing the most widely used data science methods through practical examples, specifically within the domain of credit risk management. Using both R and Python, it walks readers through real-world scenarios, offering a practical guide to applying these methods and a thorough understanding of the theoretical underpinnings. The goal is to provide readers with a clear, step-by-step approach to analyzing data, understanding the outcomes generated by pre-existing software, and making informed decisions based on those results.

The book is designed primarily for practitioners in credit risk management, though it is equally relevant to anyone interested in applied data science. It assumes that readers have a foundational knowledge of data science, particularly statistics, econometrics, finance, and banking. Familiarity with Internal Rating Based (IRB) models and International Financial Reporting Standards 9 (IFRS9) is also recommended to understand better the concepts discussed.

A supporting GitHub repository, accessible here, complements the book by expanding its scope. The repository will be regularly updated with documents covering various modeling topics.


About the Author

Andrija Djurovic’s avatar Andrija Djurovic

Andrija Djurovic is a credit risk professional with over ten years of experience in credit risk modeling. His expertise encompasses modeling Probability of Default, Loss Given Default, Exposure At Default, the development of scoring models, macroeconomic modeling, and portfolio analysis. With comprehensive statistical knowledge spanning academia to industry, his proficiency extends to crafting tailored analytics applications. Notably, Andrija is the author and developer of essential R (monobin, monobinShiny, PDtoolkit, LGDtoolkit) and Python (monobinpy) packages tailored for credit risk modeling. Andrija is also the author of the book Probability of Default Rating Modeling with R.

To learn more, visit his LinkedIn profile at www.linkedin.com/in/andrija-djurovic, github page at https://github.com/andrija-djurovic, or connect directly through email at djandrija@gmail.com.

Logo white 96 67 2x

Publish Early, Publish Often

  • Path
  • There are many paths, but the one you're on right now on Leanpub is:
  • Adsfcr › Email Author › New
    • READERS
    • Newsletters
    • Weekly Sale
    • Monthly Sale
    • Store
    • Home
    • Redeem a Token
    • Search
    • Support
    • Leanpub FAQ
    • Leanpub Author FAQ
    • Search our Help Center
    • How to Contact Us
    • FRONTMATTER PODCAST
    • Featured Episode
    • Episode List
    • MEMBERSHIPS
    • Reader Memberships
    • Department Reader Memberships
    • Author Memberships
    • Your Membership
    • COMPANY
    • About
    • About Leanpub
    • Blog
    • Contact
    • Press
    • Essays
    • AI Services
    • Imagine a world...
    • Manifesto
    • More
    • Partner Program
    • Causes
    • Accessibility
    • AUTHORS
    • Write and Publish on Leanpub
    • Create a Book
    • Create a Bundle
    • Create a Course
    • Create a Track
    • Testimonials
    • Why Leanpub
    • Services
    • TranslateAI
    • TranslateWord
    • TranslateEPUB
    • PublishWord
    • Publish on Amazon
    • CourseAI
    • GlobalAuthor
    • Marketing Packages
    • IndexAI
    • Author Newsletter
    • The Leanpub Author Update
    • Author Support
    • Author Help Center
    • Leanpub Authors Forum
    • The Leanpub Manual
    • Supported Languages
    • The LFM Manual
    • Markua Manual
    • API Docs
    • Organizations
    • Learn More
    • Sign Up
    • LEGAL
    • Terms of Service
    • Copyright Policy
    • Privacy Policy
    • Refund Policy

*   *   *

Leanpub is copyright © 2010-2025 Ruboss Technology Corp.
All rights reserved.

This site is protected by reCAPTCHA
and the Google  Privacy Policy and  Terms of Service apply.

Leanpub requires cookies in order to provide you the best experience. Dismiss