4. Categories to Watch
We would like to illustrate the role of hardware startups through highlighting a couple of product categories that we feel are poised to large changes in the near future.
The categories include traditional industries such as kitchenware and agriculture, where the role of the kind of technology described so far is not obvious. How will sensors, abundant data, smart devices, the Internet of Things, and full stack products (hardware and software closely connected within) affect them?
Another type of industry is fitness, where there are already many technology players and driven by the passion of the users. Here the theme is applying intelligence to the data for recommendations, and making data previously considered impossible to gather now available.
Finally we have an example of a newly created category, drones, that came into being only in the last few years because of the advances in hardware development.
4.1 Smart Kitchen
Driven by the smart technology, many kitchen appliances have been redesigned to compete with other premium products out in markets. Unlike the traditional appliances, these appliances can be programmed to integrate nicely into our fast-paced lifestyles. The newly remodeled appliances boast a healthy eating lifestyle without compromising the convenience that consumers demand. One of the trends that we’ve noticed on crowdfunding platforms recently is the high success rate in funding campaigns particularly in smart kitchen appliances. We projected that the kitchen appliances are expected to continue to grow in the next few years. Thus, we’re taking a deeper look into the smart kitchen appliances so it can help us understand future trends.
Trends
The increase of smart kitchen appliances can be noted through the number of smart kitchen appliances found on different crowdfunding platforms like Kickstarter and Indiegogo. This sector is very interesting because of the kitchen items that are placed on the crowdfunding platforms, all of the projects have had successful funding campaigns. The kitchen appliances were clearly a popular trend found on these platforms. There were three main conditions that have allowed this sector to thrive especially during these past couple of years:
- Healthy eating has gained a lot of attention in the media during these past couple of years.
- The demographics show that our population is undergoing negative growth. Therefore, we have an older population, which makes us stress on healthy eating.
- With the integration of more IoTs, we have a fast pace life. Consequently, our attention span has become shorter, which has caused us to demand for more fast and convenient methods to do things.
With the combination of these three conditions, it has accelerated the growth of smart kitchen appliances. By taking a closer look into the different smart kitchen innovations in different crowdfunding sites and markets, it gives some interesting data about different consumer trends.
There are two main ways in how the new technology is integrated into the everyday kitchen appliances. The two technology integration methods are 1) to promote healthier eating habits through the items and 2) create a more convenient cooking lifestyle.
From these two main reasons for integrating new technology, many new products have been able to rise. By looking at the information in a micro level, the kitchen items can be split into 4 distinct groups which fit under either one of these two reasons.
Smart Utensils
Eating utensils have been objects that haven’t seen any technological advances for centuries. Only recently during this uprise of technology have we seen an evolvement in these eating tools. Since the tools have evolved, the usages of these tools have also evolved. These smart utensils that were created were to not only act as a traditional eating utensil, but also help monitor the eating habits of the users. The utensils are able to collect their data through different types of connectivity such as Bluetooth, 3G/4G, and wifi. An example is the HAPI smart fork; this fork is able to send data regarding the pace of food consumption to the user via application.
All of the following, with the exception of the Google’s smart spoon, have features that will give data to the user regarding their eating habits or environment. One of the recent innovations are the smart chopsticks. With the recent news of hazardous food conditions, the chopsticks help alleviate the problem by alerting the user about the cleanliness of the oil that the food was cooked in. The user can use the information to change their eating habits. These premium eating utensils attract consumers because it provides high efficiency compared to the traditional eating utensils.
Smart Containers
Smart containers have also seen recent changes in the models as a result of the new technologies at hand. Same as the first group of kitchen tools, smart containers are also under the first method of integration; they provide a way to stay on a healthy lifestyle. The smart containers are equipped with different sensors that allow users to know how much of the food/liquid they are consuming. This allows users to stay on top of their recommended diet. One of the successful smart containers that had a successful funding campaign was the NEO Smart Jar. This smart jar was designed with unique sensors that help monitor the amount of food that was consumed from the jar. This product alleviates the hassle of remembering to log the amount of food consumed for health conscious people. The data can be used for the user to help them reach or maintain their health goals.
Smart Cooking Tools
Technology has also integrated itself into various cooking tools. The technology allows the cooking tools to provide a more convenient cooking environment. For example,Pantelligent’s smart frying pan gives users data to help them make perfect meals. Equipped with different temperature sensors, it helps the user understand the optimum time to keep the food in the frying pan. Things like sensors, easy access to data, and easy connectivity has allowed cooking tools to flourish.
Smart Cooking Appliances
The technology advancements in cooking appliances have long remained untouched. However, with the push of new startups, cooking appliances have also been remodeled in the past few years. There has been particular attention in integrating smart devices to things like refrigerators in the past couple of years. This is also because of the second technology integration: new quick and easy lifestyles that many people are acquiring. Samsung has shown interest in the growth of smart cooking appliances; they have created a smart refrigerator. This refrigerator is learn to grow accustomed to the users and create grocery lists. This allows users to save time when grocery shopping and food planning.
There are future developments to be seen in the kitchen industry in future markets. Technology integration has had a huge impact in the kitchen industry. Instead of continuing down a “dead” industry, it has become competitive in markets by integrating new technology to help create our lives easier and healthier.
4.2 Agriculture, Sensors and Monitoring
Agriculture is already a huge market; with net farm income worldwide estimated at somewhere around $120 billion a year. Yet in the past, the support hasn’t been there to accelerate technological advancements in agriculture as fast as in other industries. Until recently, agriculture hardware startups struggled to get the funding, manufacturing, and test facilities needed to mass produce their prototypes that could boost agricultural production efficiency around the world. There are signs, however, that the venture capital community and hardware accelerators have woken up and have begun investing in agriculture after realizing the many opportunities for agricultural innovation. Case in point, according to the Wall Street Journal a funding campaign led by Google Vetures raised upwards of $15 million for agricultural tech startup Famers Business Inc. Some other notable startups that have taken advantage of such funding are:
Although the agricultural envrionment is going through this massive digital transformation, with most equipment implementing sensors and controls to monitor everything from livestock fertility to soil quality, the addition of autonomous farm vehicles, drone mapping, and telemetry, there are still many concerns when it comes to this technological transformation within agricultural spaces, such as automation replacing jobs, rapidly changing hardware and software, massive cultural changes for the traditional” farmers as well as fears over data privacy, to name a few.
4.3 Trends in Agriculture
Urban Farming
Another interesting trend these days in agriculutre is called “urban farming”, which is a concept that is trying to make our food as close to home as possible, literally. Growing our food closer to home, we are able to help cut down on the wear and tear that the food goes through during transportation, while at the same time optimizing “freshness”. Urban farming is very interesting because it’s an area of agriculture that tech companies have just scratched the surface with meaning there is massive potential for the future.
4.4 Health and Fitness
The sheer number of health related startups has grown exponentially over the last decade, and one particularly noticeable area is fitness-related wearables. The health and fitness spaces are ever-evolving, but its recent evolution has accelerated, and hardware startups are playing a vital role in this development. Sensor technology has led to a massive increase in the popularity of health-tracking devices.
Being a health related hardware startup, there’s a lot to be excited about when deciding to build a business because of the continuing rapid development of hardware accelerators. Nonetheless, with all the buzz and excitement when it comes to health and fitness related hardware, there still needs to be a realization that even though it’s becoming easier, hardware is still hard. It’s still tough to be successful in such a competitive cutthroat market, but the future is certainly looking like it’s full of potential.
As per MaRS Market Insights fitness and sports wearables accounted for 2.4 billion dollars of the global wearable consumer market in 2014 and that number is forecasted to more than double to 5.1 billion dollars in 2018. On the non-consumer side of things, the market for medical and health wearables is forecasted to almost triple in 2018 to 2.9 billion dollars up from 1.1 billion dollars in 2014. All very encouraging numbers for hardware startups within health and fitness spaces.
Some trendy new health and fitness products that are picking up a lot of steam are:
*Linx IAS concussion monitoring system
*Sensoria fitness socks *Darma sitting pad.
4.5 Drones
Drones or remote controlled unmanned aerial vehicles benefited very much from the improvements of hardware manufacturing. Previously they were smaller variations of normal aircrafts, making them quite expensive, dangerous, and only accessible for large organizations or governments. In the last few years, drones were re-imagined such that the majority of the market is a variation on small (palm-sized to football-sized) quad-copters, with ever more powerful control electronics.
This change has started with small brainless indoor vehicles just for entertainment. Now, drones are one of the fastest growing areas of startup investment in 2015, with 63% annual growth rate.
Use cases
With the large growth came a diversification of use cases, and the major ones we think are:
- Entertainment
- Video
- Data collection
- Delivery
Entertainment
The first drones that got popular were targeting the “flying is fun” feeling in their users, and were usually indoors devices. Now they are becoming more sophisticated, robust, reliable, and powerful.
Some new drone designs use this evolution to emphasize the original fun aspect, for example by making aerial acrobatics focused versions.
Others are exploring the use of drones as a variation of existing forms of entertainment, most popular being First Person View (FPV) drone racing: flying around a designated track with a fast drone, using video streamed to a head-up-display for accurate control, and racing against other pilots, often at speeds over 50mph.
A large ecosystem sprung up around FPV racing to create specialized accessories, and versions of drones:
- using faster motors
- making lighter drones suitable for racing
- creating wireless video headsets
- creating quickly repairable designs
At the moment it is still mostly a hobby for most people, even if not a cheap one (a complete set of racing drone and gear is at least $1000, likely more). As many other hobbies that are competitive and Adrenalin-fueled as FPV racing, there’s a big potential to grow and become more professional overall, creating a larger market for suppliers.
For more information see for example “FPV Racing drone racing star wars style Pod racing are back!” on YouTube, or many other available flight footage there. Also in Make Magazine’s “Formula FPV: Drone Racing is Taking Off” feature earlier this year.
Video recording
As drones improved to carry more than just their own weight, one of the early variation was the attachment of cameras. Even now, the large majority of drone projects on crowdfunding sites are different variations of the drone-plus-camera arrangement.
First this modification was just for fun, as aerial video provides an interesting new point of view. As professional videographers started to use drones with cameras, the selling point of their footage was that “it was made with drones!”. As now people have more experience with drone-shot videos, drones become one more tool in the professional videographer’s repertoire: the “mobile aerial camera” aspect is highlighted and usually mixed with footage recorded with traditional cameras, enhancing a narrative (as opposed to dominating it previously).
There are many services popping up around this use case both for the hobbyists and professionals:
- stock videos focusing on drone footage
- different camera systems for drones (GoPro is very successful due to small size, good video, and being cheap)
- cinematographers focusing on drone videos (for example wedding photo shoots).
- drones repairs
There are still challenges, though, especially regarding safety issues using drones in sensitive areas such as restricted facilities, airports, emergencies. The rules are often unclear and government institutions, such as the Federal Aviation Administration (FAA) in the United States, are trying to regulate drone usage. The trend is likely more official regulation. Hopefully most issues will be instead addressed by common-sense rules, and community self-regulation.
Data collection
Drones carrying sensors have enhanced data collection capabilities compared to manual collection by humans. They can operate in hazardous environments, which otherwise would be inaccessible or very expensive and dangerous to access. Many drones now can operate autonomously, for example following a pattern of GPS markers set by the controller. This multiplies the area that can be covered as more drones can be operated in the same time by fewer controllers, as well as making the surveys more precise and repeatable, for example doing the same pattern every day for an extended period of time. Surveys can be done more frequently as well, providing better data for monitoring and decision making.
The types of data collection is only limited by the available sensors. Some examples that exist already:
- mapping
- environmental survey (radiation, pollution, forestry)
- animal population monitoring
- search and rescue
- use as communication node
Some challenges still remain. Most jurisdictions allow only “line of sight” flight which limits the area that can be covered by a single operator. The reliability of drone hardware needs more improvements to limit the cost of doing such surveys. The data quality can be difficult to control since it’s a mobile platform and movement affects many sensors and the environment. This can be improved by better data post-processing and analytics tools.
Delivery
Cheap unmanned aerial vehicles promise a lot of improvements for delivery services, most importantly smaller cost for not necessarily needing a driver, faster deliver by not being tied to surface roads.
The most widely known drone-based delivery initiative is Amazon Prime Air. It hasn’t quite delivered yet, but it has a lot of potential in certain niche areas, for example in scarcely populated areas, within large area facilities.
There are more specialized projects working on delivering specific objects, such as TacoCopter1, though the feasibility of many projects is in question, due to similar challenges mentioned for the other use cases. The line-of-sight flight rules and reliability issues can limit use. The value of the cargo compared to the value of a good drone is also an issue, as in most current use cases the drones are not disposable2.
Future trends
The visible future trends hold a lot of promise to improve on the drones as tools for many tasks:
- Multi-drone interaction, intelligent swarms of devices can do certain tasks such as survey more efficiently
- Improvements in autonomous flight, similarly as there were big leaps forward with autonomous road vehicles recently
- Creation of different form factors: much smaller or much larger devices for different use
- More sensors and more attached tools
Future developments of drones have a lot of opportunities for hardware makers to bring many real world benefits.