Advanced Python for Data Science

Advanced Python for Data Science

Scott Gorlin
This is a sample of the book's content.Buy on Leanpub

Table of Contents

Preface›

  • Introduction
    • What is this book?
    • Who is it for?
    • What will you learn?
    • The state of the book
  • An introduction to Advanced Python
    • What is Advanced Python?
    • Tech Requirements
    • Helpful Themes
    • Readings

Workflows›

  • Continuous science
    • Debugging
    • “Bug Report” Rules
    • Primers
    • Higher Levels
    • Testing
    • Readings
  • Scientific workflows
    • What is Python?
    • Config
    • Decorators
    • Bootstraping
    • Readings
  • Packages and iteration
    • Packages
    • Versioning
    • Functional Programming
  • Avoiding the for loop
    • Primitives
    • Vectorizing
    • Einstein Summation
    • Iteration Primitives
    • Vectorization: A Case Study
    • Iterators
    • Readings

Skeletons›

  • Classes, composition, and graphs
    • Inheritance
    • Composition
  • The DAG
    • Graphical Programs
    • What does Data Science look like?
    • The Revelation
  • Luigi
    • Project scaffolding
    • The Task
    • The Pieces
    • The Big Picture
    • Atomicity
    • Atomicity
    • Readings
  • Graphs
    • Luigi
    • The Big Picture
    • Salted Graphs
    • The Sorry State of Stateful Data
    • Advanced Luigi

Data›

  • Dask and Parquet
    • Micro Sciences
    • Dask - Basics
    • Rookie Mistakes
    • Executive Summary
    • Split, Apply, Combine
    • Data Containers
    • Parquet
    • Dask - Partitioning
    • Case Study - Fancy Indexing
    • Dask and Luigi
    • Readings
  • Django and SQL
    • Mutability
    • Living Data
    • Django
    • ORM
    • Django Code
    • ORM Breakdowns
    • The Competition
    • Readings
  • API’s and Data
    • Metaprogramming
    • DB Design
    • Atomic Targets
    • Migrations
    • The Web
    • APIs
    • Reading
  • More Meta
    • Api’s and Clients
    • Factories
    • Optimization
    • Readings

Algorithms›

  • Smart & Lazy Coding
    • Parallel Code
    • Memory Views
    • Memoization
    • Sketching
    • Readings
  • Visualization
    • Data Viz
    • Declarative Grammars
    • Javascript and HTML5
    • Colormaps
    • Data Shading
    • Readings
  • Where We Are
    • “Python”
    • Testing
    • Workflows
    • Higher Levels
    • Deployment
    • Looping
    • Functional Coding
    • Composition
    • Graphical Programs
    • Data Scaling
    • The Web
    • DB’s
    • API’s
    • Meta
    • Optimization
    • Visualization

Appendix›

  • Changelog
Advanced Python for Data Science/Data

Data

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/apds.

Up next

Dask and Parquet

In this part

  • Dask and Parquet
  • Micro Sciences
  • Dask - Basics
  • Rookie Mistakes
  • Executive Summary
  • Split, Apply, Combine
  • Data Containers
  • Parquet
  • Dask - Partitioning
  • Case Study - Fancy Indexing
  • Dask and Luigi
  • Readings
  • Django and SQL
  • Mutability
  • Living Data
  • Django
  • ORM
  • Django Code
  • ORM Breakdowns
  • The Competition
  • Readings
  • API’s and Data
  • Metaprogramming
  • DB Design
  • Atomic Targets
  • Migrations
  • The Web
  • APIs
  • Reading
  • More Meta
  • Api’s and Clients
  • Factories
  • Optimization
  • Readings