Machine Learning Engineering
$20.00
Minimum price
$40.00
Suggested price

Machine Learning Engineering

About the Book

From the author of a world bestseller published in eleven languages, The Hundred-Page Machine Learning Book, this new book by Andriy Burkov is the most complete applied AI book out there. It is filled with best practices and design patterns of building reliable machine learning solutions that scale. Andriy Burkov has a Ph.D. in AI and is the leader of a machine learning team at Gartner. This book is based on Andriy's own 15 years of experience in solving problems with AI as well as on the published experience of the industry leaders.

This is what Cassie Kozyrkov, Chief Decision Scientist at Google, tells about the book in the Foreword:

I’d like to let you in on a secret: when people say ‘machine learning’ it sounds like there’s only one discipline here. Surprise! There are actually two machine learnings, and they are as different as innovating in food recipes and inventing new kitchen appliances. Both are noble callings, as long as you don’t get them confused; imagine hiring a pastry chef to build you an oven or an electrical engineer to bake bread for you!

The bad news is that almost everyone does mix these two machine learnings up. No wonder so many businesses fail at machine learning as a result. What no one seems to tell beginners is that most machine learning courses and textbooks are about Machine Learning Research - how to build ovens (and microwaves, blenders, toasters, kettles… the kitchen sink!) from scratch, not how to cook things and innovate with recipes at enormous scale. In other words, if you’re looking for opportunities to create innovative ML-based solutions to business problems, you want the discipline called Applied Machine Learning, not Machine Learning Research, so most books won’t suit your needs.

And now for the good news! You’re looking at one of the few true Applied Machine Learning books out there. That’s right, you found one! A real applied needle in the haystack of research-oriented stuff. Excellent job, dear reader… unless what you were actually looking for is a book to help you learn the skills to design general-purpose algorithms, in which case I hope the author won’t be too upset with me for telling you to flee now and go pick up pretty much any other machine learning book. This one is different.

When I created Making Friends with Machine Learning in 2016, Google’s Applied Machine Learning course loved by more than ten thousand of our engineers and leaders, I gave it a very similar structure to the one in this book. That’s because doing things in the right order is crucial in the applied space. As you use your newfound data powers, tackling certain steps before you’ve completed others can lead to anything from wasted effort to a project-demolishing kablooie. In fact, the similarity in table of contents between this book and my course is what originally convinced me to give this book a read. In a clear case of convergent evolution, I saw in the author a fellow thinker kept up at night by the lack of available resources on Applied Machine Learning, one of the most potentially-useful yet horribly-misunderstood areas of engineering, enough to want to do something about it. So, if you’re about to close this book, how about you do me a quick favor and at least ponder why the Table of Contents is arranged the way it is. You’ll learn something good just from that, I promise.

So, what’s in the rest of the book? The machine learning equivalent of a bumper guide to innovating in recipes to make food at scale. Since you haven’t read the book yet, I’ll put it in culinary terms: you’ll need to figure out what’s worth cooking / what the objectives are (decision-making and product management), understand the suppliers and the customers (domain expertise and business acumen), how to process ingredients at scale (data engineering and analysis), how to try many different ingredient-appliance combinations quickly to generate potential recipes (prototype phase ML engineering), how to check that the quality of the recipe is good enough to serve (statistics), how to turn a potential recipe into millions of dishes served efficiently (production phase ML engineering), and how to ensure that your dishes stay top-notch even if the delivery truck brings you a ton of potatoes instead of the rice you ordered (reliability engineering). This book is one of the few to offer perspectives on each step of the end-to-end process.

Now would be a good moment for me to be blunt with you, dear reader. This book is pretty good. It is. Really. But it’s not perfect. It cuts corners on occasion - just like a professional machine learning engineer is wont to do - though on the whole, it gets its message right. And, since it covers an area with rapidly-evolving best practices, it doesn’t pretend to offer the last word on the subject. But even if it were terribly sloppy, it would still be worth reading. Given how few comprehensive guides to Applied Machine Learning are out there, a coherent introduction to these topics is worth its weight in gold. I’m so glad this one is here!

One of my favorite things about this book is how fully it embraces the most important thing you need to know about machine learning: mistakes are possible... and sometimes they hurt. As my colleagues in site reliability engineering love to say, “Hope is not a strategy.” Hoping that there will be no mistakes is the worst approach you can take. This book does so much better. It promptly shatters any false sense of security you were tempted to have about building an AI system that is more “intelligent” than you are. (Um, no. Just no.) Then it diligently takes you through a survey of all kinds of things that can go wrong in practice and how to prevent/detect/handle them. This book does a great job of outlining the importance of monitoring, how to approach model maintenance, what to do when things go wrong, how to think about fallback strategies for the kinds of mistakes you can't anticipate, how to deal with adversaries who try to exploit your system, and how to manage the expectations of your human users (there’s also a section on what to do when your, er, users are machines). These are hugely important topics in practical machine learning, but they’re so often neglected in other books. Not here.

If you intend to use machine learning to solve business problems at scale, I'm delighted you got your hands on this book. 

Enjoy!

  • Share this book

  • Categories

    • Machine Learning
    • Artificial Intelligence
    • Systems Engineering
    • Software Engineering
  • Feedback

    Email the Author(s)

About the Author

Andriy Burkov
Andriy Burkov

Andriy Burkov holds a PhD in Artificial Intelligence, he works as a senior data scientist and machine learning team leader at Gartner.

The Leanpub 60 Day 100% Happiness Guarantee

Within 60 days of purchase you can get a 100% refund on any Leanpub purchase, in two clicks.

Now, this is technically risky for us, since you'll have the book or course files either way. But we're so confident in our products and services, and in our authors and readers, that we're happy to offer a full money back guarantee for everything we sell.

You can only find out how good something is by trying it, and because of our 100% money back guarantee there's literally no risk to do so!

So, there's no reason not to click the Add to Cart button, is there?

See full terms...

Earn $8 on a $10 Purchase, and $16 on a $20 Purchase

We pay 80% royalties on purchases of $7.99 or more, and 80% royalties minus a 50 cent flat fee on purchases between $0.99 and $7.98. You earn $8 on a $10 sale, and $16 on a $20 sale. So, if we sell 5000 non-refunded copies of your book for $20, you'll earn $80,000.

(Yes, some authors have already earned much more than that on Leanpub.)

In fact, authors have earnedover $14 millionwriting, publishing and selling on Leanpub.

Learn more about writing on Leanpub

Free Updates. DRM Free.

If you buy a Leanpub book, you get free updates for as long as the author updates the book! Many authors use Leanpub to publish their books in-progress, while they are writing them. All readers get free updates, regardless of when they bought the book or how much they paid (including free).

Most Leanpub books are available in PDF (for computers) and EPUB (for phones, tablets and Kindle). The formats that a book includes are shown at the top right corner of this page.

Finally, Leanpub books don't have any DRM copy-protection nonsense, so you can easily read them on any supported device.

Learn more about Leanpub's ebook formats and where to read them

Write and Publish on Leanpub

You can use Leanpub to easily write, publish and sell in-progress and completed ebooks and online courses!

Leanpub is a powerful platform for serious authors, combining a simple, elegant writing and publishing workflow with a store focused on selling in-progress ebooks.

Leanpub is a magical typewriter for authors: just write in plain text, and to publish your ebook, just click a button. (Or, if you are producing your ebook your own way, you can even upload your own PDF and/or EPUB files and then publish with one click!) It really is that easy.

Learn more about writing on Leanpub